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Trypanosoma cruzi is the causative agent of Chagas disease, a parasitic infection

endemic in Latin America. In T. cruzi the transport of polyamines is essential because

this organism is unable to synthesize these compounds de novo. Therefore, the uptake

of polyamines from the extracellular medium is critical for survival of the parasite. The

anthracene-putrescine conjugate Ant4 was first designed as a polyamine transport

probe in cancer cells. Ant4 was also found to inhibit the polyamine transport system

and produced a strong trypanocidal effect in T. cruzi. Considering that Ant4 is not

currently approved by the FDA, in this work we performed computer simulations to

find trypanocidal drugs approved for use in humans that have structures and activities

similar to Ant4. Through a similarity ligand-based virtual screening using Ant4 as

reference molecule, four possible inhibitors of polyamine transport were found. Three of

them, promazine, chlorpromazine, and clomipramine, showed to be effective inhibitors

of putrescine uptake, and also revealed a high trypanocidal activity against T. cruzi

amastigotes (IC50 values of 3.8, 1.9, and 2.9µM, respectively) and trypomastigotes

(IC50 values of 3.4, 2.7, and 1.3µM, respectively) while in epimastigotes the IC50 were

significantly higher (34.7, 41.4, and 39.7µM, respectively). Finally, molecular docking

simulations suggest that the interactions between the T. cruzi polyamine transporter

TcPAT12 and all the identified inhibitors occur in the same region of the protein. However,

this location is different from the site occupied by the natural substrates. The value

of this effort is that repurposing known drugs in the treatment of other pathologies,

especially neglected diseases such as Chagas disease, significantly decreases the time

and economic cost of implementation.

Keywords: Trypanosoma cruzi, Chagas disease, polyamine transport, drug repositioning, trypanocidal drugs,

polyamines

INTRODUCTION

The protozoan Trypanosoma cruzi is the causative agent of Chagas disease, a severe parasitic
infection endemic in Latin America with ∼7 million infected and more than 70 million
people at risk, mostly living in conditions of extreme poverty (1, 2). With no immediate
prospect of a vaccine, developing therapeutic alternatives to treat Chagas disease is an urgent

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2019.00256
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2019.00256&domain=pdf&date_stamp=2019-11-08
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cpereira@retina.ar
https://doi.org/10.3389/fmed.2019.00256
https://www.frontiersin.org/articles/10.3389/fmed.2019.00256/full
http://loop.frontiersin.org/people/838427/overview
http://loop.frontiersin.org/people/838518/overview
http://loop.frontiersin.org/people/704705/overview
http://loop.frontiersin.org/people/837748/overview
http://loop.frontiersin.org/people/838448/overview
http://loop.frontiersin.org/people/404327/overview


Reigada et al. Trypanosoma cruzi Polyamine Transport Inhibitors

need. The available drugs, benznidazole, and nifurtimox, have
been used for nearly half a century and can cause severe
side effects decreasing the quality of life of the patients. In
addition, they are only partially effective in the treatment of
the chronic phase of the disease, when most of the patients
are diagnosed (3). For example, the recent results of the trial
“BENznidazole Evaluation For Interrupting Trypanosomiasis”
(BENEFIT) showed that this drug does not produce any
improvement on the Chagasic cardiopathy in patients in the
chronic phase of the disease, highlighting the necessity for the
development of new treatments (4).

Polyamines are aliphatic polycations, which are present in all
living organisms. One of the most interesting chemical features
of polyamines is the regularly spaced positive charges and their
ability to form ionic interactions with other molecules (5).
These low-molecular weight compounds are essential for cell
survival because they are involved in a wide variety of metabolic
processes. In this sense, the most abundant polyamines in nature,
putrescine, spermidine, and spermine participate in cell growth
and proliferation, signal transduction, gene transcription, and
translation processes (6).

In T. cruzi the uptake of polyamines is essential for cell
survival because the parasite is not able to synthesize polyamines
de novo due to the lack of the enzymes arginine decarboxylase
and ornithine decarboxylase. Unlike mammals, T. cruzi only
obtains polyamines from the extracellular medium by transport
processes (7, 8). The permease called TcPAT12 (also known as
TcPOT1) is until now the only functionally validated polyamine
transporter in T. cruzi (9, 10). This protein constitutes a
promising target for the development of new drugs since: (A)
no homologs of the permease have been found in mammals;
(B) is responsible for the intracellular availability of essential
metabolites, (C) regulates many metabolic pathways and parasite
stress responses, (D) mediates the uptake of trypanocidal drugs,
(E) is essential to sustain the parasite infection (11), and
(F) inhibition of polyamine transport by drugs has a strong
trypanocidal effect (12–16).

In cancer cells, high polyamine concentrations are required
by every cell stage. Besides polyamine biosynthesis, cancer
cells also utilize polyamine importers to augment their
intracellular polyamine pools. These transporters can be
targeted via the delivery of cytotoxic polyamine conjugates
or via drugs which inhibit polyamine uptake (17). The
co-administration of polyamine transport and biosynthesis
inhibitors was successfully tested in cancer models. For example,
the use of benzene derivatives of polyamines in combination with
the ornithine decarboxylase inhibitor, difluoromethylornithine
(DFMO), produced a cytotoxic effect in Chinese hamster ovary
cells (CHO) and L3.6pl human pancreatic cancer cells (18).
In addition, similar effects were observed in CHO cells using
polyamines conjugated with the cytotoxic anthracene (19).

Prior work with a 9-anthracenylmethyl-putrescine conjugate
(Ant4) explored its ability to inhibit polyamine transport and
affect cell viability. Ant4 induced cytotoxicity in the HL-60 cell
line after only 24 h exposure with an IC50 of 20µM, and apoptosis
was the main mechanism of cell death. Ant4 was shown to inhibit
putrescine transport and decreased its intracellular concentration

(17). This conjugate was tested not only in mammalian cells, but
also in unicellular parasites. For example, in the human malaria
parasite Plasmodium falciparum, Ant4 inhibited the proliferation
of the intraerythrocytic stage with an IC50 of 0.64 µM (20).

In our previous studies with T. cruzi, Ant4 decreased the
putrescine and spermidine transport in epimastigotes, the insect
stage of the parasite, with IC50 values of 5.2 and 8.8µM,
respectively. Ant4 also showed a strong trypanocidal effect on
trypomastigotes, the bloodstream stage of T. cruzi, with an IC50

of 460 nM, and a selectivity index of about 13. This trypanocidal
effect of Ant4 is very promising since it is significantly higher
than the observed for benznidazole, the drug currently used
to treat Chagas disease. In addition, the combination of both
drugs produced a significant increase on the trypanocidal effect
compared with individual treatments (14).

One of the strategies applied to identify drugs for neglected
diseases is the search for approved compounds used in treating
other pathologies. This strategy is known as drug repurposing
or drug repositioning. One of the main advantages of this
experimental approach is that reduces the time and the economic
cost necessary to apply approved drugs in the treatment of
other diseases. This is especially relevant in orphan diseases, like
Chagas disease, which have only few drug alternatives available.
Taking into account the high trypanocidal activity of Ant4, and
that this molecule is not approved for use in humans, in this
work we identified, using in silico and in vitro strategies, three
antipsychotic tricyclic drugs which have similar structure and
activity to Ant4.

MATERIALS AND METHODS

Parasites and Cells
Trypanosoma cruzi epimastigotes of the Y strain (5 × 106

cells/mL) were cultured at 28◦C in plastic flasks (25 cm2),
containing BHT (brain-heart infusion-tryptose, 5mL) medium
supplemented with 10% fetal calf serum (FCS), 100 U/mL
penicillin, 100µg/mL streptomycin and 20µg/mL hemin.
Vero cells (African green monkey kidney) were cultured in
MEM medium supplemented with 10% heat inactivated FCS,
0.15% (w/v) NaHCO3, 100 U/mL penicillin and 100 U/mL
streptomycin at 37◦C in 5% CO2 atmosphere. Trypomastigotes
and amastigotes of the Y strain were obtained from Vero infected
cells as previously described (21).

Transport Assays
Aliquots of epimastigote or trypomastigote cells were centrifuged
at 8,000 g for 30 s, and washed once with phosphate-buffered
saline (PBS). Parasites were resuspended in PBS (0.1mL) and the
assay started by the addition of 0.1mL of the transport mixture
containing [3H]-putrescine or [3H]-spermidine (PerkinElmer’s
NEN R© Radiochemicals; 0.4 µCi) in the presence of different
concentrations of the indicated drug. All the compounds to
be tested were dissolved in water. Following incubation during
10min at 28◦C (epimastigotes) or 37◦C (trypomastigotes),
transport was stopped by adding 1mL of ice-cold PBS. Cells
were centrifuged as indicated above, and washed twice with ice-
cold PBS. Cell pellets were resuspended in 0.2mL of water and
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counted for radioactivity in UltimaGold XR liquid scintillation
cocktail (Packard Instrument Co., Meridien CT, USA). Cell
viability was assessed by direct microscopic examination. Non-
specific uptake and carry over were assayed without incubation
or incubated at 4◦C (22).

Trypanocidal Activity Assays
T. cruzi epimastigotes were cultured as described above, in
24-wells plate at a start density of 106 cells/mL in BHT
medium. Parasites were treated with different concentrations
of each drug, and epimastigote proliferation was determined
after 24 h. Trypanocidal activity in cell-derived trypomastigotes
and amastigotes was performed using 106 cells/mL in 96-
well plates which were incubated at 37◦C for 24 h in the
presence of the corresponding drug. Growth was determined
by counting in a Neubauer chamber or via viability assays
using “Cell Titer 96 R© Aqueous One Solution Cell Proliferation
Assay (MTS)” (Promega, Madison, WI, USA) according to the
manufacturer’s instructions.

Cell Viability Assay
Cytotoxicity against VERO cells was determined by the crystal
violet staining assay. The cells (104 cells/well) were incubated
in 96-well plates with the indicated compound (or diluent only
as a negative control) and maintained at 37◦C for 24 h. At the
end of treatment, cells were fixed for 15min, and stained with
0.5% crystal violet. After washing with water and drying, the
absorbance of stained cells was measured at 570 nm.

Intracellular Localization of Ant4 and
Chlorpromazine by Fluorescence
Microscopy
Epimastigotes (2 × 106 cells/ml) were incubated with the
corresponding concentrations of each compound for 30min
at 28◦C. Afterwards, the samples were settled for 20min at
room temperature onto poly-L-lysine coated coverslips and then
fixed for 20min with 2% paraformaldehyde in PBS. Slides were
mounted using 80% glycerol in PBS and cells were observed
under an Olympus BX60 fluorescence microscope. Images were
recorded with an Olympus XM10 camera.

Virtual Screening
Similarity screening searches were performed using the 9-
anthracenylmethyl-putrescine conjugate, Ant4, as the reference
(query) compound. Structures (≈10,000) were obtained from
the highly curated “Sweetlead” database of the world’s approved
medicines, illegal drugs, and isolates from traditional medicinal
herbs (23). The screening was performed using the software
LiSiCA v1.0 (Ligand Similarity using Clique Algorithm) (24).
Different control structures were used in screening searches,
in order to check if they were identified with higher scores
in each resulting list, thus validating the correct operation
of the program. Shared chemical features between structures
were identified by feature-based structure alignments using the
LigandScout algorithm (25).

Docking Simulations
The tested molecules as well as the natural ligands of TcPAT12,
putrescine, and spermidine, were used to model the mode of
interaction with an homology model of the transporter using the
molecular docking algorithm in AutoDock 4.5 (26) as described
previously (16). For docking simulations, a grid that covers the
whole transporter molecule was applied and the program was
run using a Lamarckian Genetic Algorithm 100 times, with a
population size of 300, and 2.7 × 104 as maximum number of
generations. The figures of the docking poses where produced
using Pymol (The PyMOL Molecular Graphics System, Version
2.0 Schrödinger, LLC.) and the protein residues important for the
interaction with the ligands were colored using Pymol according
to the Eisenberg hydrophobicity scale (27).

Statistics and Data Analysis
IC50 and TIC50 values were obtained by non-linear regression
of dose-response logistic functions, using GraphPad Prism 6.01
for Windows, and the corresponding R-square was indicated for
each curve. All experiments were performed in triplicate and
the data are presented as mean ± standard deviation (SD). P-
values of the comparisons were calculated using the extra sum of
squares F-test.

RESULTS

Similarity Virtual Screening
Ant4 is an experimental drug for cancer treatment not yet
approved for use in humans, which also has a strong trypanocidal
action (14). Therefore, the first step to identify an approved
drug with similar activity to Ant4 was to perform a similarity-
based virtual screening with the final objective of repurposing
the resulting drugs as trypanocidal agents. Ant4 was defined as
the query molecule to compare with 10,000 chemical structures
of the Sweetlead database using the LiSICA software. Applying
this strategy, four drugs were chosen for further analysis between
the top 10 scored compounds with a Tanimoto coefficient (TC,
a structural similarity index) > 0.5, and also considering their
availability, price and toxicity. These drugs were promazine
(PRM; ZINC ID: 10402; TC = 0.64), chlorpromazine (CHL;
ZINC ID: 44027; TC = 0.58), levomepromazine (LVM; ZINC
ID: 20246; TC = 0.58), and clomipramine (CLM; ZINC ID:
20248; TC = 0.56). Interestingly, all of them are antipsychotic
tricyclic drugs (Figure 1). The LigandScout algorithm was
used to identify common chemical features (groups that can
participate in chemical interactions with a macromolecule)
between Ant4 and the obtained drugs. Feature-based structure
alignments were performed and the similarities were calculated
as the number of matched feature pairs (MFP; i.e., aromatic
ring, hydrophobic area, hydrogen bond donor or acceptor,
negative or positive ionizable atom, and metal binding location).
For these comparisons, the ten features present in Ant4 were
set as references. CHL was the structure that shares more
chemical features with Ant4 (5 out of 10); including three
hydrophobic interactions, one hydrogen bond donor and one
positive ionizable interaction. Alignment results are shown in
Supplementary Figures S1, S2.
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FIGURE 1 | Structures of Ant4 chemical analogs obtained by similarity-based virtual screening. The antipsychotic tricyclic drugs, promazine (PRM), chlorpromazine

(CHL), levomepromazine (LVM) and clomipramine (CLM) were selected for in vitro assays in T. cruzi parasites.

Inhibition of Polyamine Transport by Ant4
Chemical Analogs
To test the similarity screening predictions, the ability of PRM,
CHL, LVM, and CLM to inhibit the polyamine uptake was
analyzed. Transport assays were performed in epimastigote cells
in the presence of putrescine or spermidine (5 and 15µM,
respectively) and each putative inhibitor in a concentration
range of 0–600µM. Concentrations that inhibit the 50% of the
transport activity (TIC50) were calculated. PRM, CHL, and CLM
produced an inhibition of putrescine transport with calculated
TIC50 values of 51.8µM (±4.7), 22.6µM (±1.3), and 35.3µM
(±2.6), respectively (Figure 2A). However, the spermidine
transport was inhibited only by CHL with a calculated TIC50
of 25.7µM (±1.9) (Figure 2B). LVM did not produce an
inhibition of polyamine transport in this concentration range.
No alterations in the parasites viability were observed after the
transport assays indicating that the inhibitory effect was not due
to compounds toxicity.

Trypanocidal Effect of Ant4 Analogs
The trypanocidal activity was evaluated only for those drugs that
inhibited polyamine transport activity, namely PRM, CHL, and
CLM. Interestingly, all these compounds presented trypanocidal
effect against the three stages of T. cruzi. Epimastigotes
were treated with each drug in concentrations between 0
and 500µM and the trypanocidal effect was determined
24 h post-treatment. The calculated concentrations that inhibit
the 50% of the parasite proliferation (IC50) were 34.7µM
(±2.3), 41.4µM (±4.0), and 39.7µM (±2.8) for PRM, CHL,
and CLM, respectively (Figure 3A). Next, the trypanocidal
activity of these drugs was also assessed in cell-derived
trypomastigotes and amastigotes in concentrations between
0 and 50µM and IC50 values were calculated 24 h post-
treatment. PRM, CHL and CLM showed similar trypanocidal
effects on both parasite forms and presented significantly lower
IC50 values than those obtained for the epimastigote stage
(p < 0.0001 for all drugs); corresponding to 3.4µM (±0.5),
2.7µM (±0.2), and 1.3µM (±0.2) for trypomastigotes cells
and 3.8µM (±0.2); 1.9µM (±0.1), and 2.9µM (±0.1) for
amastigote parasites (Figures 3B,C). This means that T. cruzi

trypomastigotes and intracellular amastigotes, the therapeutically
relevant stages present in the mammalian host, are about 10
to 20-fold (depending on the drug) more susceptible than
epimastigotes, the insect stage of the parasite. Additionally,
the cytotoxicity of drugs was tested using mammalian Vero
cells to determine the selectivity index (SI = IC50 on
Vero cells/IC50 on trypomastigotes). Cells exposed to PRM,
CHL, and CLM for 24 h in a concentration range from
0 to 300µM showed SI values of 17.9 (IC50 62.8µM ±

3.6), 9.4 (IC50 26.4µM ± 0.3), and 38.2 (IC50 53.5µM
± 2.1), respectively. These results indicate that the drugs
are more selective against T. cruzi trypomastigotes than
host cells.

Effect of Ant4 Analogs on Polyamine
Transport in T. cruzi Trypomastigotes
In order to further test the correlation between the trypanocidal
activity of PRM, CHL, and CLM and the polyamine transport,
the inhibitory effect of the drugs on putrescine and spermidine
uptake in the trypomastigote stage of T. cruzi was also evaluated.
PRM, CHL, and CLM were tested at concentrations similar
to the TIC50 values calculated on epimastigotes. As occurred
with epimastigotes, all the compounds inhibited the putrescine
transport in trypomastigotes. The results showed that 50µM
PRM, 25µM CHL, and 35µM CLM produced inhibition of
83% (±2.2), 84.3% (±5.9), and 79.2% (±11.4) respectively. In
addition, in this stage of the parasite all drugs also inhibited
the spermidine transport. At 25µM the inhibitions observed
were 64.6% (±2.7), 55.7% (±0.7), and 60.2% (±9.5) for
PRM, CHL, and CLM, respectively. These results suggest
that the compounds evaluated act through a polyamine
transport inhibition mechanism in T. cruzi epimastigotes
and trypomastigotes.

Binding Properties of Ant4 and Its
Chemical Analogs
Using a previously reported homology-modeled structure of
the T. cruzi polyamine permease TcPAT12 (16), the ability of
Ant4, PRM, CHL, LVM, and CLM to bind the transporter was
tested by a computer-assisted simulation method. AutoDock
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FIGURE 2 | Effect of promazine, chlorpromazine and clomipramine on polyamine transport in T. cruzi epimastigotes. Transport assays were performed incubating 107

epimastigotes with 5µM [3H]-putrescine (A) or 15µM [3H]-spermidine (B) in the presence of different concentrations of drugs (PRM, dark gray squares; CLM, light

gray diamonds; CHL, black circles) between 0 and 600µM. The concentrations that inhibit the polyamine transport in a 50% (TIC50) were calculated by non-linear

regression using the GraphPad Prism software (R2
PRM = 0.945; R2

CLM = 0.962; R2
CHL = 0.981 for putrescine, R2

CHL = 0.951 for spermidine).

FIGURE 3 | Trypanocidal effect of Ant4 chemical analogs on different stages of the T. cruzi life cycle. 106 exponential phase epimastigotes were treated with different

concentrations of drugs (PRM, dark gray squares; CLM, light gray diamonds; CHL, black circles) between 0 and 500µM and incubated for 24 h (A). Culture-derived

trypomastigotes (B) or amastigotes (C) (106 cells/mL) were exposed to compounds for 24 h in the concentration range of 0–50µM (B). Inhibitory concentrations for

50% parasites after 24 h (IC50) were carried as described in the Materials and Methods section (R2
PRM = 0.973; R2

CLM = 0.977; R2
CHL = 0.923 for epimastigotes; R2

PRM

= 0.934; R2
CLM = 0.966; R2

CHL = 0.973 for trypomastigotes; R2
PRM = 0.992; R2

CLM = 0.995; R2
CHL = 0.988 for amastigotes).

TABLE 1 | Predicted binding energies by molecular docking of the tricyclic drugs.

Compound ZINC ID dG (mean) dG (lower)

Ant4 N/A −8.38 −9.90

Clomipramine 20248 −7.35 −8.29

Chlorpromazine 44027 −7.29 −8.38

Promazine 10402 −6.64 −7.64

Levomepromazine 20246 −6.27 −7.64

Putrescine* 5828633 −2.42 −3.31

Spermidine* 1532612 −2.17 −3.33

All tricyclic drugs obtained by similarity searching, in addition to the reference compound

Ant4 and the substrates of TcPAT12 (*), were listed in the table. Columns indicate the

compound, the ID according to the ZINC database (http://zinc.docking.org/), the mean

(dG mean), and the lower (dG lower) ligand efficiencies of the most populated cluster.

Those compounds that produced a significant inhibition of polyamine transport and

trypanocidal activity were highlighted (light gray). Ligand efficiency values were calculated

using the AutoDock program.

software was used to calculate possible conformations of the
ligands which bind TcPAT12. Interestingly, the ranking of the
docking scores correlates with the ranking of transport inhibition

as presented in Table 1. The docking poses with the residues
involved in the interaction of each compound with TcPAT12
are schematized in Figure 4. In all the ligands, the aliphatic
carbon chain occupies a hydrophobic site formed by residues
W241 and A244. In the docking simulations, the putrescinemotif
in putrescine, spermidine, and Ant4 fell in the same position
of the pocket. The polycycle of Ant4 occupied a hydrophobic
pocket formed by Y400, I140, T141, Y148, and A244. The ring
structures in PRM and its analogs occupy the same hydrophobic
pocket as Ant4. Between the promazine derivatives, CHL differs
from PRM just in its chlorinated polycycle, and this accounts
for the stronger inhibitory effect of CHL. LVM docking pose
is very similar to that of CHL, but the methoxy group (that
substitutes the Cl) clashes with the protein in a very hydrophilic

pocket, which probably explains why LVM was not able to

inhibit the transporter experimentally. CLM had a docking pose
very similar to all the other compounds, but with the chloride
in the opposite side of the pocket. We hypothesize that the
additional carbon atoms in the central ring orients the chloride
at an angle that makes it unable to occupy the same position as
in CHL.
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FIGURE 4 | Docking simulations. The docking poses and the residues important for each interaction are shown, where the dashed yellow lines represent the polar

contacts and possible hydrogen bonds between the transporter and the ligands. Note: the residues are colored according to the Eisenberg hydrophobicity scale (27)

where increased red color denotes higher hydrophobic character.

Incorporation of Ant4 and Chlorpromazine
To test whether the tricyclic drugs studied not only block
the transport of polyamines but also are incorporated into
the cell, the intrinsic fluorescence signal of Ant4 and CHL
was used as an analysis tool. When the accumulation of these
compounds into cells was visualized by fluorescence microscopy,
epimastigotes treated with 50µM Ant4 or 25µM CHL for
30min showed that these drugs present very similar pattern of
intracellular localization, dispersed through the cytoplasm of the
parasites (Figure 5). These results, together with those obtained
in transport assays, demonstrate that both Ant4 and CHL are
actively transported into the T. cruzi cell.

DISCUSSION

Tricyclic neuroleptic drugs, including clomipramine and
chlorpromazine, were previously described as therapeutic
agents for trypanosomiasis. The most studied mechanism
of action was the inhibition of the trypanothione reductase;
the enzyme responsible for the synthesis of the antioxidant
compound trypanothione, the parasite analog of glutathione
(28, 29). However, other properties and multi-target effects were
reported, among them are: (a) the inhibition of the enzyme
dihydrolipoamide dehydrogenase (30), (b) the interaction with

nucleic acids, and (c) the generation of phenothiazines cation
radicals. In this work we describe a novel mechanism of action
of these drugs in Trypanosoma cruzi; the inhibition of the
polyamine transporter TcPAT12 in addition to the possible
intracellular toxic effects. Using the experimental oncologic

drug Ant4 (not approved for use in humans) which has a
strong activity on T. cruzi we performed a similarity virtual
screening and identified three antipsychotic drugs; promazine,

chlorpromazine, and clomipramine, which were repositioned as
trypanocidal agents. All parasite stages tested for trypanocidal

activity were affected by Ant4 and the tricyclic drugs herein
reported and an increased sensitivity of the trypomastigote

and amastigote stages was observed. It should be noted

that psychiatric patients, who receive oral treatments with

chlorpromazine or clomipramine within the reference doses,
reach plasma concentrations in the range of the calculated IC50

for both drugs in the stages present in the mammalian host.

In consequence these medicines are promising candidates to
perform pre-clinical evaluations for the development of new
therapeutic alternatives to treat Chagas disease.

The differential trypanocidal effect of polyamine transport
inhibitors on T. cruzi epimastigote and trypomastigote stages was
previously observed by our group (14, 16) and could be explained
due to the variability of polyamine concentrations in the niche of
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FIGURE 5 | Intracellular localization of Ant4 and chlorpromazine in T. cruzi.

Fluorescence microscopy images and corresponding differential interference

contrast images (DIC) of epimastigotes treated with 50µM Ant4 or 25µM CHL

for 30min. Scale bar = 10 µm.

each stage. For example, the epimastigote stage supports a highly
variable extracellular media within the intestine of the vector
and depends on the feeding status of the insect. In contrast, the
trypomastigote stage lives in a medium with scarce fluctuations
within the mammalian host. Therefore, it is likely that the
trypomastigotes have less efficient compensatory mechanisms to
support a decrease in the concentration of polyamines caused by
the TcPAT12 inhibitors. The fact that the effect of Ant4 and its
analogs is higher in the non-replicative trypomastigote stage also
suggests that the main mechanism of toxicity is on the transport
of polyamines and not on cell division, where anthracene would
also act as a DNA intercalating agent. This sensitivity difference
between the stages of the T. cruzi life cycle is important since the
trypomastigote is the most sensitive stage and the most relevant
from a therapeutic point of view.

Other trypanocidal drugs that inhibit the polyamine transport
mediated by TcPAT12 were identified by virtual screening
techniques. Isotretinoin, a popular drug used for acne treatment,
showed the most stable predicted interaction with TcPAT12 and
inhibited the polyamine transport in vitro. Moreover, isotretinoin
showed a strong inhibition of trypomastigote burst from infected
cells with a calculated IC50 of 130 nM and a selectivity index of
920 and is a promising drug for pre-clinical trials (16).

Fluorescence microscopy studies also revealed the uptake
and intracellular accumulation of Ant4 and chlorpromazine.
Both compounds were internalized by T. cruzi epimastigotes
suggesting distinct cellular targets besides polyamine transport.

In human cancer cells it has been described that Ant4 anthracene
moiety interact and induces DNA damage (17), however, as
previously mentioned, no correlation between replication and
toxicity was observed. In this sense, further studies are required
to identify these targets in the parasite.

Our data suggests that both the putrescine moiety and the
large hydrophobic ring of Ant4 contribute to its polyamine
transport inhibition activity. From the perspective of designing
new TcPAT12 inhibitors, the docking models suggest that these
compounds should keep the putrescine motif, while retaining
all protonable nitrogen as in the case of Ant4. Moreover, large
hydrophobic rings should be present to anchor the drug into
the hydrophobic pocket previously described. This work also
suggests that halogen substitution on the hydrophobic moiety
could provide higher binding affinity for the transporter.

All these results highlight the importance of the polyamine
transporter TcPAT12 as a therapeutic target for Chagas disease
and drug repositioning as an adequate strategy for drug discovery
to treat neglected diseases.
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